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SHORT COMMUNICATIONS

Comments on Allegra’s paper »A simplified formula for the calculation of the X-ray inten-
sity diffracted by a monodimensionally disordered structure«. By Jiro Kaxmnokr and YUKITOMO
Kowmura, Faculty of Science, Osaka City University, Minamiogimachi, Kita-ku, Osaka, Japan

(Received 23 October 1961)

The intensity of X-rays diffracted by a one-dimensionally
disordered crystal was given, in a matrix form, first by
Hendricks & Teller (1942) and also by Kakinoki &
Komura (1952) as follows:

i |
I=N spur VF + 3 (N —n) spur VFQ” +conj., (1)
n=1
where:

N is the total number of layers;

(VF)is = wsVsV¥;

(Q)st = Py exp (—'L.q?s);

@s is the phase shift due to the layer of sth kind;

Vs is the layer form factor of the layer of sth kind;

ws is the probability of finding the layer of sth kind;

P is the probability of finding the layer of sth kind
after that of sth kind;

conj. means the complex conjugate of the second term
in (1).

Allegra (1961) recently reported a new method of
carrying out the summation in (1) regardless of whether
the matrix Q could be diagonalized by the similarity
operation OQO-! or not. His formula is rewritten by
using our notation as

Tav. =spur VF(1 —Q)~1+conj. —spur VF, (2)

where N in (1) is taken as infinite. The same result has
already been given by us (Kakinoki & Komura, 1952)
leaving N as finite:

I =N{spur VF +spur VFQ(1 — Q)-1 4 conj.}
+spur VF(Q¥+1~Q)(1 ~ Q)2 +conj. (3)

The first three terms (called diffuse term) are found to
be the same with (2) in which Iy, means the average
intensity per layer while I in (1) is the average per
crystallite with N layers. The rest of (3) (called higher
term) contributes to the intensity when N is very small
or when the structure tends to regular one.

In our study calculation of the intensity equation (1)
has further progressed even when the matrix Q cannot
be diagonalized. The idea is to use a Jordan’s normal
form reduced from any type of matrix Q by the similarity
transformation. Let us take a simple example in which
the eigenvalues of 3 x 3Q matrix are all equal and the
normal form is expressed by
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z, 1 0
00Q0! =Q, = ( 0 2 1 ) (4)
0 0 a

In this case spur VFQ" can be written in a form as
spur VRQ?” =¢2? + cOna?1 4+ cDin(n — )22,  (5)
and then (1) (neglecting higher term) can be expressed by

o EQ @

¢ . v
(T—zy) " (Imzy T (I—gy) T OO —sPUr F}
(6)

¢, ¢V, ¢ in (6) are the solutions of simultaneous
equations obtained from (5) by putting »=0, 1 and 2.
There is no need, in this calculation, to evaluate O, O-!
and OVFO-1,

Further simplification can be made without obtaining
eigenvalues and c¢,’s. If we use the relations between
roots and coefficients in

s
det (1 — Q)= Y apxS—™, (7)
n=>0

=

and other relations such as
Jn = spur VFQn
= 2‘2 cg}’r)

v pl’!

nn=1)...(n—p,+1)

A (8)

I in (1) can be expressed in a general form as

I = ND+H,

D = D’+conj.—J,, H is the higher term,
S-1 =n 8

D=3 Zanfme/ An - (9)
n=1 m=>0 n=>0

This equation is found to be valid for any type of Q.
The general derivation and discussion of this result will
be given in this Journal in a near future.
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The molecular dimensions of 2:3-dihydro-2:3-methylene-1:4-naphthaquinone: a compari-
son of the results of two- and three-dimensional analysis. By W. K. GranT and J. C. SPEARMAN,
Chemisiry Department, The University, Qlasgow, W. 2, Scotland

(Received 20 October 1961)

The compound, C,,;H0,, with the chemical constitution
implied in Fig. 1, crystallizes in the space group P2,/m
with two molecules in a cell of dimensions,

a=698, b=10-55, c=546 A; B=94-5°.

For a non-planar molecule, it is remarkable in having



SHORT COMMUNICATIONS

nearly all its atoms effectively resolved in all three
principal projections; along the comparatively long b-axis
this is possible because the molecule is bisected by the
mirror-plane so that pairs of atoms precisely coincide
in this projection. The structure therefore seemed well
suited for analysis by two-dimensional methods, and such
a study has been reported in some detail (Grant &
Speakman, 1958). Standard deviations for the bond-
lengths were then assessed at 0-015 A for C-0, and at
0-018-0-030 for C—C.

Subsequently we have been able to apply three-
dimensional refinement, using the DEUCE programs
devised by Rollett (1961). The coordinate-shifts were
considerable. Though they exceeded three times the
previously estimated standard deviations only for C(4),
their overall effect on the bond-lengths was radical:
for instance, they invalidated a supposed parallelism
between the bond-lengths in the naphthalenic part of the
molecule and those in naphthalene itself. This experience
illustrates the risk of placing reliance on projections,
even when they seem well-resolved. The unsophisticated
criterion of resolution—namely that the atoms have
separated electron-density maxima—is no doubt in-
adequate.

Table 1. Atomic coordinates, with respect to an origin
located at a centre of symmetry
2, y, and z are fractional, the decimal point to the left being
omitted; X’, ¥ and Z’ are in A and with respect to orthogonal
axes, X’ being parallel to z and ¥ to y

(To avoid inconsistencies due to rounding-off, more figures
appear in the last three columns than are significant)

Atom T Y z X’ Y z’
o} 3284 0016 2734 21752  0-0159 1-4878
C(1) 0512 1837 8322  0-0006 1-9381 4-5295
C(2) 1564 1197 6681 0-8044 1-2619 3-6371
C(3) 2651 1837 5017 1-6353 1-9373 2:7316
C(4) 3674 1112 3188  2:4282 1-1731 1-7363
C(5) 5191 1779 1934 3-5403 1-8764 1-0521
C(6) 6651 2500 3533  4-4903 26375 1-9210
H(1) — 043 136 968 —0-712 1432 5273
H(2) 158 023 672  0-818  0-237  3-658
H(5) 582 127 043 4045 1339  0-237
H(6) 617 250 522  4-084 2638  2-841
H(6%) 770 250 297  5-248  2-638 1-617

Table 2. Thermal parameters x 10% (see text)

Atom b1 bas b3 bog b3y b1p
(0] 364 1-24 6-:06 —0-82 073 —0-14
C(1) 2:40 1-76 445 —0-07 —0-24 0-10
C(2) 2-98 1-30 4-63 0-55 0-59 0-08
C(3) 2-76 1-16 4-01 0-41 —0-02 0-17
C(4) 3-39 1-24 4-22 0-02 044 —0-22
o(5) 244 126 472 —030 011 —0-24
C(6) 3-35 1-52 5-80 — —0-69 —
H's (All) 298 130 487  — 059  —

(These values, for H, correspond to an isotropic Debye-factor,
B=4-0 A2)
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The refinement was based on 611 independent re-
flexions, some 709% of those accessible to Cu Ku-radia-
tion, and it consisted of six cycles of least-squares during
which R for the observed terms fell from 22-29, to 13:89%.
Inclusion of the hydrogen atoms after three cycles
improved the agreement, though the refinement of their
positional parameters is questionable and that of their
thermal parameters negligible. The final coordinates are
listed in Table 1. The revised bond-lengths and angles
are shown in Fig. 1, where for comparison the original
bond-lengths are given in parentheses. Table 2 lists
anisotropic thermal parameters, b;; being the constants
in the expression,

o=(B11h® +Dyok? 4+ bygl® +byshk + gkl + by lh)

Standard deviations, o(r), assessed from the least-squares
residuals, are 0-004 A for oxygen and 0-006 A (average)
for carbon atoms; these correspond to 0-007 for C-O
(which depends substantially only on the y-coordinates),
to 0-010 for the C—C bonds that lie across the mirror-
plane, and to 0-008 A for the other C-C bonds. For
bond-angles the deviations are about 0-6°. Though the
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Fig. 1. Numbering of atoms and molecular dimensions. The
bond-lengths (A) found in the earlier, two-dimensional
analysis are shown in parentheses. C(6), H(6) and H(6%)
are in special positions on the mirror-plane perpendicular
to b.

comparison is inexact, as new and rescaled experimental
data are involved, we compared the R-values for the
three principal zones with those obtained in the two-
dimensional analysis: for k0, hOl and Okl respectively
they are 12:6, 12-8 and 13-39%, against the original 13-0,
11-3 and 12:29,. For these partial data, the more exact
analysis yields an agreement that is slightly less im-
pressive.
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